"Step by Step"

Robotics Smart Car Robot

Smart Car Robot " steps"

- Step 1: Assembling the robot support base;
- Step 2: Mounting the motor shield and top bracket;
- Step 3: Assembly of the components at the top of the robot;
- Step 4: Connections and sensors ;
- Stage 5 Programming.

Smart Car Robot " defenition"

The Smart Car Robot is a vehicle that independently must overcome obstacles and continuous along a route. Through a SmartPhone vehicle can be controlled via bluetooth.

Smart Car Robot "Implementation"

Place the acrylic in the correct positions and tighten with screws

Smart Car Robot "Implementation"

Place the universal wheel under the car chassis. You should put the fasteners and screws.

Smart Car Robot "Implementation"

Put the optical sensor on top of each acrylic, and tighten the remaining screws.

Smart Car Robot "Implementation"

Connect the wires" 10cm female to female" to the Arduino and sensors according to the pinout, and colors of the wires.

Vcc → Red Gnd→Blue Signal 12→ Green Signal 11→ Yellow Signal 10→ Brown

Signal 12 to Left Signal 11 to Center Signal 10 to Right

Smart Car Robot "Implementation"

Connect the wires" 20cm female to female" to the Arduino and bridge H according to the pinout, and colors of the wires.

Signal 9 \rightarrow Yellow Signal 6 \rightarrow Green Signal 5 \rightarrow Blue Signal 4 \rightarrow Orange Signal 3 \rightarrow Red Signal 2 \rightarrow Gray

Signal 9 to ENB Signal 6 to ENA Signal 5 to IN4 Signal 4 to IN3 Signal 3 to IN2 Signal 2 to IN1

Smart Car Robot "Implementation"

Connect the wires" 10cm female to female" to the Arduino and bluethoot according to the pinout, and colors of the wires.

Vcc → Red Gnd→Black TX → White RX → Brown

TX to RX

RX to TX

Smart Car Robot "Programming"

The bridge H is the component responsible for the speed and reversing the engines of the Smart car Robot. The bridge H is the component responsible for the speed and reversing the engines of the Smart car Robot. According to the logical state of the sensors of the vehicle rotates in one direction.

S Left	SCenter	S Right	IN1	IN2	IN3	IN4	Direction
1	1	0	0	1	1	0	FRONT
1	0	1	1	0	0	1	BACK
0	1	1	1	0	0	0	RIGHT
1	1	0	0	0	1	0	LEFT

Smart Car Robot "Programming"

Open the file Smart Car Robot and complete the code of programming.

```
if ((Valor_Sensor_F == ) && (Valor_Sensor_D == ) && (Valor_Sensor_E == )) //LEFT
{
    digitalWrite(MOTORDA, );
    analogWrite(EN_D, 255);
    digitalWrite(MOTOREA, );
    digitalWrite(MOTORER, );
    analogWrite(EN_E, 100);
```


Smart Car Robot "Connect and UpLoad"

Connect the USB cable from the PC to the Arduino and selects the correct board and its port. Then uploads the program

Smart_Car_Robot Arduino 1	.6.5	_		And the second second
icheiro <u>E</u> ditar Ra <u>s</u> cunho Ferr	ramen <u>t</u> as) Ajuda			
Smart_Car_Robot	Formatar Automaticamente Arquivar Rascunho Corrigir Codificação & Recarregar	Ctrl+T		
analogWrite(EN	Monitor Série	Ctrl+Shift+M		
delay (500); digitalWrite(M	Placa: "Arduino Nano"			Boards Manager
digitalWrite (MC analogWrite (EN digitalWrite (MC	Processador: "ATmega328" Porta			Placas Arduino AVR Arduino Yún
digitalWrite(MC analogWrite(EN	Programador: "AVRISP mkII"	1		Arduino Uno Arduino Duemilanove or Diecimila
// delay(400);	Gravar bootloader		۲	Arduino Nano
}				Arduino Mega or Mega 2560
if ((Valor Sensor F	== HIGH) && (Valor Sensor D	== LOW) &&		Arduino Mega ADK

Smart Car Robot "Connect and UpLoad"

Install the application for controlling the Smart Car Robot and enjoy.

